Application of a Gradient Descent Continuous Actor-Critic Algorithm for Double-Side Day-Ahead Electricity Market Modeling
نویسندگان
چکیده
An important goal of China’s electric power system reform is to create a double-side day-ahead wholesale electricity market in the future, where the suppliers (represented by GenCOs) and demanders (represented by DisCOs) compete simultaneously with each other in one market. Therefore, modeling and simulating the dynamic bidding process and the equilibrium in the double-side day-ahead electricity market scientifically is not only important to some developed countries, but also to China to provide a bidding decision-making tool to help GenCOs and DisCOs obtain more profits in market competition. Meanwhile, it can also provide an economic analysis tool to help government officials design the proper market mechanisms and policies. The traditional dynamic game model and table-based reinforcement learning algorithm have already been employed in the day-ahead electricity market modeling. However, those models are based on some assumptions, such as taking the probability distribution function of market clearing price (MCP) and each rival’s bidding strategy as common knowledge (in dynamic game market models), and assuming the discrete state and action sets of every agent (in table-based reinforcement learning market models), which are no longer applicable in a realistic situation. In this paper, a modified reinforcement learning method, called gradient descent continuous Actor-Critic (GDCAC) algorithm was employed in the double-side day-ahead electricity market modeling and simulation. This algorithm can not only get rid of the abovementioned unrealistic assumptions, but also cope with the Markov decision-making process with continuous state and action sets just like the real electricity market. Meanwhile, the time complexity of our proposed model is only O(n). The simulation result of employing the proposed model in the double-side day-ahead electricity market shows the superiority of our approach in terms of participant’s profit or social welfare compared with traditional reinforcement learning methods.
منابع مشابه
Application of Gradient Descent Continuous Actor-Critic Algorithm for Bilateral Spot Electricity Market Modeling Considering Renewable Power Penetration
The bilateral spot electricity market is very complicated because all generation units and demands must strategically bid in this market. Considering renewable resource penetration, the high variability and the non-dispatchable nature of these intermittent resources make it more difficult to model and simulate the dynamic bidding process and the equilibrium in the bilateral spot electricity mar...
متن کاملDay-Ahead Market Modeling for Strategic Wind Power Producers under Robust Market Clearing
In this paper, considering real time wind power uncertainties, the strategic behaviors of wind power producers adopting two different bidding modes in day-ahead electricity market is modeled and experimentally compared. These two different bidding modes only provide a wind power output plan and a bidding curve consisting of bidding price and power output, respectively. On the one hand, to signi...
متن کاملA Model-Based Actor-Critic Algorithm in Continuous Time and Space
This paper presents a model-based actorcritic algorithm in continuous time and space. Two function approximators are used: one learns the policy (the actor) and the other learns the state-value function (the critic). The critic learns with the TD(λ) algorithm and the actor by gradient ascent on the Hamiltonian. A similar algorithm had been proposed by Doya, but this one is more general. This al...
متن کاملOptimal Bidding Strategies of GENCOs in Day-Ahead Energy and Spinning Reserve Markets Based on Hybrid GA-Heuristic Optimization Algorithm
In an electricity market, every generation company (GENCO) attempts to maximize profit according to other participants bidding behaviors and power systems operating conditions. The goal of this study is to examine the optimal bidding strategy problem for GENCOs in energy and spinning reserve markets based on a hybrid GA-heuristic optimization algorithm. The heuristic optimization algorithm used...
متن کاملAgent-Based Modeling of Day-Ahead Real Time Pricing in a Pool-Based Electricity Market
In this paper, an agent-based structure of the electricity retail market is presented based on which day-ahead (DA) energy procurement for customers is modeled. Here, we focus on operation of only one Retail Energy Provider (REP) agent who purchases energy from DA pool-based wholesale market and offers DA real time tariffs to a group of its customers. As a model of customer response to the offe...
متن کامل